Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1715: 464561, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38154259

RESUMO

Ribonucleoside hydrolase C (RihC, EC 3.2.2.1-3.2.2.3, 3.2.2.7, 3.2.2.8) belongs to the family of ribonucleoside hydrolases that catalyze the cleavage of both purine and pyrimidine ribonucleosides to nitrogenous bases and ribose. Its most efficient reaction is the cleavage of uridine with the highest reaction rate. The reaction cannot be detected by a simple spectrophotometric method because of the same absorption maximum for the substrate and reaction product or requires time- and labor-consuming sample preparation for ribose. Reversed-phase HPLC is currently used to register enzymatic activity, where the time of one chromatographic run takes about 10 min. Since a large number of analyses is required to measure the kinetics of an enzymatic reaction, the total time is significant. In this work, we obtained new recombinant RihC from Limosilactobacillus reuteri by gene cloning and expression in E.coli cells. We proposed a new approach for determining the enzymatic activity of the new RihC using hydrophilic interaction liquid chromatography (HILIC). The novel column was developed for this procedure providing the determination of uracil and uridine with high efficiency and retention times of 0.9 and 1.7 min, respectively. Kinetic parameters for RihC uridine cleavage were determined. The proposed approach provided significant rapidity for measurement of the enzyme kinetics being 5 times faster as compared to reversed-phase HPLC.


Assuntos
Hidrolases de Éster Carboxílico , Ribonucleosídeos , Ribose , Ribonucleosídeos/análise , Cromatografia Líquida , Uridina , Escherichia coli/genética , Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas
2.
Biochem Biophys Res Commun ; 616: 134-139, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35667288

RESUMO

Once you have missed the first button …, you'll never manage to button up Johann Wolfgang von Goethe Formate oxidation is a final step of methanol oxidation in methylotrophic prokaryotes and is important for detoxification of formate in other organisms. The structural mechanism of the formate dehydrogenase (FDH) of Pseudomonas sp. 101 has been studied for about 30 years. In the active center of FDH, the oxidation of formic acid into carbon dioxide in a NAD+-dependent way takes place. Residues that form the active center of that enzyme, as well as those that form the so-called substrate channel, are engaged in the catalytic cycle. Our study allowed to characterize a new residue, Tyr102, involved in the work of the enzyme. This residue is located in the outer neck of the substrate channel (at the beginning of the path of the substrate to the active center) and acts as a "button" which connects two enzyme domains into an active, "buttoned up" conformation. Our study of the kinetic parameters of mutant enzymes has shown that Tyr102Phe substitution leads to an approximately 80-fold increase of the Michaelis constant relative to the native enzyme, unlike Phe311Trp and Phe311Tyr substitution of neighboring residue Phe311. Our analysis of the Tyr102Phe mutant in the open conformation by X-ray crystallography has shown that its overall fold remains almost the same as that of the native enzyme. Molecular dynamics simulations of the ternary complexes of the native FDH enzyme and its Tyr102Phe mutant showed that Tyr102Phe substitution results in the loss of an interdomain hydrogen bond between the Tyr102 and Gln313 residues, which, in turn, destabilizes the closed conformation and affects the isolation of the FDH active site from water molecules. Our structural investigations have shown that Tyr102Phe replacement also leads to the destruction of interdomain contacts of Phe102 with Phe311, Pro312 residues, and decreases the stability of the Leu103-Val127 beta bridge. Phylogenetic analysis also confirmed the importance of the Tyr102 residue for enzymes from the FDH family, in which it is absolutely conserved.


Assuntos
Formiato Desidrogenases , NAD , Sequência de Aminoácidos , Formiato Desidrogenases/química , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Formiatos , NAD/metabolismo , Filogenia , Pseudomonas
3.
Acta Naturae ; 14(1): 82-91, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35441051

RESUMO

Formate dehydrogenase from Pseudomonas sp. 101 bacterium (PseFDH, EC 1.2.1.2) is a research model for the elucidation of the catalytic mechanism of 2-oxyacid D-specific dehydrogenases enzyme superfamily. The enzyme is actively used for regeneration of the reduced form of NAD(P)H in chiral synthesis with oxidoreductases. A multi-point mutant PseFDH SM4S with an improved thermal and chemical stability has been prepared earlier in this laboratory. To further improve the properties of the mutant, additional single-point replacements have been introduced to generate five new PseFDH mutants. All new enzymes have been highly purified, and their kinetic properties and thermal stability studied using analysis of thermal inactivation kinetics and differential scanning calorimetry. The E170D amino acid change in PseFDH SM4S shows an increase in thermal stability 1.76- and 10-fold compared to the starting mutant and the wild-type enzyme, respectively.

4.
Acta Naturae ; 14(4): 57-68, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36694899

RESUMO

D-amino acid oxidase (DAAO, EC 1.2.1.2) plays an important role in the functioning of prokaryotes as well as of lower (yeast and fungi) and higher eukaryotes (mammals). DAAO genes have not yet been found in archaean genomes. D-amino acid oxidase is increasingly used in various fields, which requires the development of new variants of the enzyme with specific properties. However, even within one related group (bacteria, yeasts and fungi, mammals), DAAOs show very low homology between amino acid sequences. In particular, this fact is clearly observed in the case of DAAO from bacteria. The high variability in the primary structures of DAAO severely limits the search for new enzymes in known genomes. As a result, many (if not most) DAAO genes remain either unannotated or incorrectly annotated. We propose an approach that uses bioinformatic methods in combination with general 3D structure and active center structure analysis to confirm that the gene found encodes D-amino acid oxidase and to predict the possible type of its substrate specificity. Using a homology search, we obtained a set of candidate sequences, modelled the tertiary structure of the selected enzymes, and compared them with experimental and model structures of known DAAOs. The effectiveness of the proposed approach for discrimination of DAAOs and glycine oxidases is shown. Using this approach, new DAAO genes were found in the genomes of six strains of extremophilic bacteria, and for the first time in the world, one gene was identified in the genome of halophilic archaea. Preliminary experiments confirmed the predicted specificity of DAAO from Natronosporangium hydrolyticum ACPA39 with D-Leu and D-Phe.

5.
Biochemistry (Mosc) ; 85(5): 575-582, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32571187

RESUMO

Phenylacetone monooxygenase (EC 1.14.13.92, PAMО) catalyzes oxidation of ketones with molecular oxygen and NADPH with the formation of esters. PAMО is a promising enzyme for biotechnological processes. In this work, we generated genetic constructs coding for PAMO from Thermobifida fusca, containing N- or C-terminal His6-tags (PAMO N and PAMO C, respectively), as well as PAMO L with the His6-tag attached to the enzyme C-terminus via a 19-a.a. spacer. All PAMO variants were expressed as catalytically active proteins in Escherichia coli BL21(DE3) cells; however, the expression level of PAMO N was 3 to 5 times higher than for the other two enzymes. The catalytic constants (kcat) of PAMO C and PAMO L were similar to that published for PAMO L produced in a different expression system; the catalytic constant for PAMO N was slightly lower (by 15%). The values of Michaelis constants with NADPH for all PAMО variants were in agreement within the published data for PAMO L (within the experimental error); however, the KM for benzylacetone was several times higher. Thermal inactivation studies and differential scanning calorimetry demonstrated that the thermal stability of PAMO N was 3 to 4 times higher compared to that of the enzymes with the C-terminal His6-tag.


Assuntos
Acetona/análogos & derivados , Histidina/química , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Oligopeptídeos/química , Proteínas Recombinantes/metabolismo , Acetona/metabolismo , Cinética , Relação Estrutura-Atividade , Especificidade por Substrato , Thermobifida/enzimologia
6.
Biochemistry (Mosc) ; 85(6): 689-696, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32586232

RESUMO

# These authors contributed equally to the work. NAD+-dependent formate dehydrogenase from Staphylococcus aureus (SauFDH) is one of the key enzymes responsible for the survival of this pathogen in the form of biofilms. 3D structure of the enzyme might be helpful in the search for highly specific SauFDH inhibitors that can be used as antibacterial agents exactly against S. aureus biofilms. Here, we prepared a recombinant SauFDH in Escherichia coli cells with a yield of 1 g target protein per liter medium. The developed procedure for the enzyme purification allowed to obtain 400 mg of homogenous enzyme with 61% yield. The specific activity of the purified recombinant SauFDH was 20 U per mg protein, which was 2 times higher than the previously reported activities of formate dehydrogenases. We also found crystallization conditions in the course of two rounds of optimization and obtained 200- and 40-µm crystals for the SauFDH apo- and holoenzymes, respectively. X-ray analysis using synchrotron X-ray sources produced diffraction data sufficient for solving the three-dimensional structures of the apo- and holoenzymes with the resolution of 2.2 and 2.7 Å, respectively. Crystals of the apo- and holoforms of SauFDH had different crystal space groups, which suggest coenzyme binding in the SauFDH holoenzyme.


Assuntos
Cristalização/métodos , Cristalografia por Raios X/métodos , Formiato Desidrogenases/química , Formiato Desidrogenases/isolamento & purificação , Conformação Proteica , Proteínas Recombinantes/química , Staphylococcus aureus/enzimologia , Formiato Desidrogenases/metabolismo , Modelos Moleculares , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
7.
Biochemistry (Mosc) ; 82(10): 1207-1214, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29037142

RESUMO

An organism naturally responds to hypoxia via stabilization of hypoxia-inducible factor (HIF). There are three isoforms of HIFα subunits whose stability is regulated by three isozymes of HIF prolyl hydroxylase (PHD1-3). Despite intense studies on recombinant enzyme isoforms using homogeneous activity assay, there is no consensus on the PHD isoform preference for the HIF isoform as a substrate. This work provides a new approach to the problem of substrate specificity using cell-based reporters expressing the enzyme and luciferase-labeled substrate pair encoded in the same expression vector. The cell is used as a microbioreactor for running the reaction between the overexpressed enzyme and substrate. Using this novel approach, no PHD3 activity toward HIF3 was demonstrated, indirectly pointing to the hydroxylation of the second proline in 564PYIP567 (HIF1) catalyzed by this isozyme. The use of "paired" enzyme-substrate reporters to evaluate the potency of "branched tail" oxyquinoline inhibitors of HIF PHD allows higher precision in revealing the optimal structural motif for each enzyme isoform.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Linhagem Celular Tumoral , Genes Reporter , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
8.
Acta Naturae ; 9(2): 82-87, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740730

RESUMO

The bacteriolytic activity of interleukin-2 and chicken egg lysozyme in the presence of various substances has been studied. Glycine and lysine do not affect the activity of interleukin-2 but increase that of lysozyme, showing a bell-shape concentration dependence peaking at 1.5 mM glycine and 18 mM lysine. Arginine and glutamate activate both interleukin-2 and lysozyme with a concentration dependence of the saturation type. Aromatic amino acids have almost no effect on the activity of both interleukin-2 and lysozyme. Aromatic amines, tryptamine, and tyramine activate interleukin-2 but inhibit lysozyme. Peptide antibiotics affect interleukin and lysozyme similarly and exhibit maximum activity in the micromolar range of antibiotics. Taurine has no effect on the activity of interleukin-2 and lysozyme. Mildronate showed no influence on lysozyme, but it activated interleukin-2 with the activity maximum at 3 mM. EDTA activates both interleukin-2 and lysozyme at concentrations above 0.15 mM.

9.
Biochimie ; 133: 74-79, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28007502

RESUMO

HIF prolyl hydroxylase is a major regulator of HIF stability. Branched tail oxyquinolines have been identified as specific inhibitors of HIF prolyl hydroxylase and recently demonstrated clear benefits in various scenarios of neuronal failure. The structural optimization for branched tail oxyquinolines containing an acetamide bond has been performed in the present study using HIF1 ODD-luc reporter assay. The special attention has been paid to the length of a linker between acetamide group and phenyl ring, as well as substitutions in the phenyl ring in the other branch of the tail. The optimized version of branched tail oxyquinolines is 3-fold more potent than the original one identified before and shows a submicromolar EC50 in the reporter assay. The compounds have been studied in a "liver-on-a-chip" device to question their hepatotoxicity towards differentiated human HepaRG "hepatocytes": the absence of hepatotoxicity is observed up to 200 µM concentrations for all studied derivatives of branched tail oxyquinolines.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Prolina Dioxigenases do Fator Induzível por Hipóxia/biossíntese , Oxiquinolina/química , Acetamidas/química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxiquinolina/farmacologia , Relação Estrutura-Atividade
10.
Acta Naturae ; 8(1): 98-102, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27099789

RESUMO

The bacteriolytic activity of interleukin-2 and hen egg white lysozyme against 34 different species of microorganisms has been studied. It was found that 6 species of microorganisms are lysed in the presence of interleukin-2. All interleukin-2-sensitive microorganisms belong either to the Enterobacteriaceae, Bacillaceae, or the Lactobacillaceae family. It was also found that 12 species of microorganisms are lysed in the presence of lysozyme, and 16 species of microorganisms are lysed in the presence of sodium dodecyl sulfate (SDS). The bacteriolytic activity of interleukin-2 and lysozyme was studied at various pH values.

11.
Acta Naturae ; 7(3): 55-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483960

RESUMO

Recently, we demonstrated that the amino acid substitutions Ala267Met and Ala267Met/Ile272Val (Alekseeva et al., Biochemistry, 2012), Phe290Asp, Phe290Asn and Phe290Ser (Alekseeva et al., Prot. Eng. Des. Select, 2012) in recombinant formate dehydrogenase from soya Glycine max (SoyFDH) lead to a significant (up to 30-100 times) increase in the thermal stability of the enzyme. The substitutions Phe290Asp, Phe290Asn and Phe290Ser were introduced into double mutant SoyFDH Ala267Met/Ile272Val by site-directed mutagenesis. Combinations of three substitutions did not lead to a noticeable change in the catalytic properties of the mutant enzymes. The stability of the resultant triple mutants was studied through thermal inactivation kinetics and differential scanning calorimetry. The thermal stability of the new mutant SoyFDHs was shown to be much higher than that of their precursors. The stability of the best mutant SoyFDH Ala267Met/Ile272Val/Phe290Asp turned out to be comparable to that of the most stable wild-type formate dehydrogenases from other sources. The results obtained with both methods indicate a great synergistic contribution of individual amino acid substitutions to the common stabilization effect.

12.
Protein Expr Purif ; 113: 85-93, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25986322

RESUMO

Anionic tobacco peroxidase (TOP) is extremely active in chemiluminescence reaction of luminol oxidation without addition of enhancers and more stable than horseradish peroxidase under antibody conjugation conditions. In addition, recombinant TOP (rTOP) produced in Escherichia coli is known to be a perfect direct electron transfer catalyst on electrodes of various origin. These features make the task of development of a high-yield reactivation protocol for rTOP practically important. Previous attempts to reactivate the enzyme from E. coli inclusion bodies were successful, but the reported reactivation yield was only 14%. In this work, we thoroughly screened the refolding conditions for dilution protocol and compared it with gel-filtration chromatography. The impressive reactivation yield in the dilution protocol (85%) was achieved for 8 µg/mL solubilized rTOP protein and the refolding medium containing 0.3 mM oxidized glutathione, 0.05 mM dithiothreitol, 5 mM CaCl2, 5% glycerol in 50 mM Tris-HCl buffer, pH 9.6, with 1 µM hemin added at the 24th hour of incubation. A practically important discovery was a 30-40% increase in the reactivation yield upon delayed addition of hemin. The reactivation yield achieved is one of the highest reported in the literature on protein refolding by dilution. The final yield of purified active non-glycosylated rTOP was ca. 60 mg per L of E. coli culture, close to the yield reported before for tomato and tobacco plants overexpressing glycosylated TOP (60 mg/kg biomass) and much higher than for the previously reported refolding protocol (2.6 mg per L of E. coli culture).


Assuntos
Escherichia coli/genética , Peroxidases/química , Peroxidases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Hemina , Concentração de Íons de Hidrogênio , Corpos de Inclusão , Peroxidases/genética , Peroxidases/isolamento & purificação , Redobramento de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Ureia
13.
Acta Naturae ; 7(1): 60-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25927002

RESUMO

It has been shown by an X-ray structural analysis that the amino acid residues Ala198, which are located in the coenzyme-binding domain of NAD(+)-dependent formate dehydrogenases (EC 1.2.1.2., FDH) from bacteria Pseudomonas sp.101 and Moraxella sp. C-1 (PseFDH and MorFDH, respectively), have non-optimal values of the angles ψ and φ. These residues were replaced with Gly by site-directed mutagenesis. The mutants PseFDH A198G and MorFDH A198G were expressed in E.coli cells and obtained in active and soluble forms with more than 95% purity. The study of thermal inactivation kinetics showed that the mutation A198G results in a 2.5- fold increase in stability compared to one for the wild-type enzymes. Kinetic experiments indicate that A198G replacement reduces the KM (NAD+) value from 60 to 35 and from 80 to 45 µM for PseFDH and MorFDH, respectively, while the KM (HCOO-) value remains practically unchanged. Amino acid replacement A198G was also added to the mutant PseFDH D221S with the coenzyme specificity changed from NAD(+) to NADP(+). In this case, an increase in thermal stability was also observed, but the influence of the mutation on the kinetic parameters was opposite: KM increased from 190 to 280 µM and from 43 to 89 mM for NADP(+) and formate, respectively. According to the data obtained, inference could be drawn that earlier formate dehydrogenase from bacterium Pseudomonas sp. 101 was specific to NADP(+), but not to NAD(+).

14.
Biochimie ; 115: 71-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25957835

RESUMO

Tobacco anionic peroxidase (TOP) is known to effectively catalyze luminol oxidation without enhancers, in contrast to horseradish peroxidase (HRP). To pursue structure-activity relationship studies for TOP, two amino acids have been chosen for mutation, namely Thr151, close to the heme plane, and Phe140 at the entrance to the active site pocket. Three mutant forms TOP F140Y, T151W and F140Y/T151W have been expressed in Escherichia coli, and reactivated to yield active enzymes. Single-point mutations introducing additional aromatic amino acid residues at the surface of TOP exhibit a significant effect on the enzyme catalytic activity and stability as judged by the results of steady-state and transient kinetics studies. TOP T151W is up to 4-fold more active towards a number of aromatic substrates including luminol, whereas TOP F140Y is 2-fold more stable against thermal inactivation and 8-fold more stable in the reaction course. These steady-state observations have been rationalized with the help of transient kinetic studies on the enzyme reaction with hydrogen peroxide in a single turnover regime. The stopped-flow data reveal (a) an increased stability of F140Y Compound I towards hydrogen peroxide, and thus, a higher operational stability as compared to the wild-type enzyme, and (b) a lesser leakage of oxidative equivalents from TOP T151W Compound I resulting in the increased catalytic activity. The results obtained show that TOP unique properties can be further improved for practical applications by site-directed mutagenesis.


Assuntos
Aminoácidos Aromáticos , Mutagênese Sítio-Dirigida , Peroxidases/química , Peroxidases/metabolismo , Benzotiazóis/metabolismo , Biocatálise , Estabilidade Enzimática , Peróxido de Hidrogênio/metabolismo , Cinética , Modelos Moleculares , Oxirredução , Peroxidases/genética , Conformação Proteica , Redobramento de Proteína , Especificidade por Substrato , Ácidos Sulfônicos/metabolismo , Temperatura
15.
Protein Eng Des Sel ; 28(6): 171-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25744036

RESUMO

Previous experiments on substitution of the residue Phe290 to Asp, Asn and Ser in NAD(+)-dependent formate dehydrogenase from soya Glycine max (SoyFDH) showed important role of the residue in enzyme thermal stability and catalytic properties (Alekseeva et al. Prot. Eng. Des. Sel., 2012a; 25: :781-88). In this work, we continued site-directed mutagenesis experiments of the Phe290 and the residue was changed to Ala, Thr, Tyr, Glu and Gln. All amino acid changes resulted in increase of catalytic constant from 2.9 to 3.5-4.7 s(-1). The substitution Phe290Ala led to KM (NAD+) decrease from 13.3 to 8.6 µM, and substitutions Phe290Tyr and Phe290Glu resulted in decrease and increase of KM (HCOO-) from 1.5 to 0.9 and -2.9 mM, respectively. The highest improvement of catalytic properties was observed for SoyFDH Phe290Ala which showed 2-fold higher catalytic efficiency with both substrates. Stability of mutants was examined by study of thermal inactivation kinetics and differential scanning calorimetry (DSC). All five amino acids provided increase of thermal stability of mutant SoyFDH in comparison with wild-type enzyme. Mutant SoyFDH Phe290Glu showed the highest improvement-the stabilization effect was 43 at 56°C. The DSC data agree with results of thermal inactivation kinetics. Substitutions Phe290Tyr, Phe290Thr, Phe290Gln and Phe290Glu provided Tm value increase 0.6°-6.6°. SoyFDH Phe290Glu and previously prepared SoyFDH Phe290Asp show similar thermal stability as enzymes from Candida boidinii and Mycobacterium vaccae N10 and have higher catalytic efficiency with NAD(+) compared with all described FDHs. Therefore, these mutants are very perspective enzymes for coenzyme regeneration in processes of chiral synthesis with dehydrogenases.


Assuntos
Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estabilidade Enzimática , Formiato Desidrogenases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas de Plantas/genética , Conformação Proteica
16.
Biochemistry (Mosc) ; 80(13): 1690-700, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26878574

RESUMO

Comparison of amino acid sequences of NAD+-dependent formate dehydrogenases (FDH, EC 1.2.1.2) from different sources and analysis of structures of holo-forms of FDH from bacterium Pseudomonas sp. 101 (PseFDH) and soya Glycine max (SoyFDH) as well as of structure of apo-form of FDH from yeast Candida boidinii (CboFDH) revealed the presence on the surface of protein globule of hydrophobic Phe residue in structurally equivalent position (SEP). The residue is placed in the coenzyme-binding domain and protects bound NAD+ from solvent. The effects of amino acid changes of the SEP on catalytic properties and thermal stability of PseFDH, SoyFDH, and CboFDH were compared. The strongest effect was observed for SoyFDH. All eight amino acid replacements resulted in increase in thermal stability, and in seven cases, increase in catalytic constant was achieved. Thermal stability of SoyFDH after mutations Phe290Asp and Phe290Glu increased 66- and 55-fold, respectively. KM values of the enzyme for substrate and coenzyme in different cases slightly increased or decreased. In case of one CboFDH, the mutein catalytic constant increased and thermal stability did not changed. In case of the second CboFDH mutant, results were the opposite. In one PseFDH mutant, amino acid change did not influence the catalytic constant, but in three others, the parameter was reduced. Two PseFDH mutants had higher and two mutants lower thermal stability in comparison with initial enzyme. Analysis of results of SEP mutagenesis in FDHs from bacterium, yeast, and plant shows that protein structure plays a key role for effect of the same amino acid changes in equivalent position in protein globule of formate dehydrogenases from different sources.


Assuntos
Biocatálise , Formiato Desidrogenases/metabolismo , Fenilalanina , Sequência de Aminoácidos , Bactérias/enzimologia , Estabilidade Enzimática , Eucariotos/enzimologia , Formiato Desidrogenases/genética , Temperatura Alta , Cinética , Modelos Moleculares , Mutação , NAD/metabolismo , Estrutura Terciária de Proteína
17.
Acta Naturae ; 6(3): 76-88, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25349716

RESUMO

Hydrophobization of alpha-helices is one of the general approaches used for improving the thermal stability of enzymes. A total of 11 serine residues located in alpha-helices have been found based on multiple alignments of the amino acid sequences of D-amino acid oxidases from different organisms and the analysis of the 3D-structure of D-amino acid oxidase from yeast Trigonopsis variabilis (TvDAAO, EC 1.4.3.3). As a result of further structural analysis, eight Ser residues in 67, 77, 78, 105, 270, 277, 335, and 336 positions have been selected to be substituted with Ala. S78A and S270A substitutions have resulted in dramatic destabilization of the enzyme. Mutant enzymes were inactivated during isolation from cells. Another six mutant TvDAAOs have been highly purified and their properties have been characterized. The amino acid substitutions S277A and S336A destabilized the protein globule. The thermal stabilities of TvDAAO S77A and TvDAAO S335A mutants were close to that of the wild-type enzyme, while S67A and S105A substitutions resulted in approximately 1.5- and 2.0-fold increases in the TvDAAO mutant thermal stability, respectively. Furthermore, the TvDAAO S105A mutant showed on average a 1.2- to 3.0-fold higher catalytic efficiency with D-Asn, D-Tyr, D-Phe, and D-Leu as compared to the wild-type enzyme.

18.
Acta Naturae ; 5(4): 62-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24455184

RESUMO

Alpha-amino acid ester hydrolase (EC 3.1.1.43, AEH) is a promising biocatalyst for the production of semi-synthetic ß-lactam antibiotics, penicillins and cephalosporins. The AEH gene from Xanthomonas rubrilineans (XrAEH) was recently cloned in this laboratory. The three-dimensional structure of XrAEH was simulated using the homology modeling method for rational design experiments. The analysis of the active site was performed, and its structure was specified. The key amino acid residues in the active site - the catalytic triad (Ser175, His341 and Asp308), oxyanion hole (Tyr83 and Tyr176), and carboxylate cluster (carboxylate groups of Asp209, Glu310 and Asp311) - were identified. It was shown that the optimal configuration of residues in the active site occurs with a negative net charge -1 in the carboxylate cluster. Docking of different substrates in the AEH active site was carried out, which allowed us to obtain structures of XrAEH complexes with the ampicillin, amoxicillin, cephalexin, D-phenylglycine, and 4-hydroxy-D-phenylglycine methyl ester. Modeling of XrAEH enzyme complexes with various substrates was used to show the structures for whose synthesis this enzyme will show the highest efficiency.

19.
Biochemistry (Mosc) ; 77(10): 1181-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23157298

RESUMO

Natural D-amino acid oxidases (DAAO) are not suitable for selective determination of D-amino acids due to their broad substrate specificity profiles. Analysis of the 3D-structure of the DAAO enzyme from the yeast Trigonopsis variabilis (TvDAAO) revealed the Phe258 residue located at the surface of the protein globule to be in the entrance to the active site. The Phe258 residue was mutated to Ala, Ser, and Tyr residues. The mutant TvDAAOs with amino acid substitutions Phe258Ala, Phe258Ser, and Phe258Tyr were purified to homogeneity and their thermal stability and substrate specificity were studied. These substitutions resulted in either slight stabilization (Phe258Tyr) or destabilization (Phe258Ser) of the enzyme. The change in half-inactivation periods was less than twofold. However, these substitutions caused dramatic changes in substrate specificity. Increasing the side chain size with the Phe258Tyr substitution decreased the kinetic parameters with all the D-amino acids studied. For the two other substitutions, the substrate specificity profiles narrowed. The catalytic efficiency increased only for D-Tyr, D-Phe, and D-Leu, and for all other D-amino acids this parameter dramatically decreased. The improvement of catalytic efficiency with D-Tyr, D-Phe, and D-Leu for TvDAAO Phe258Ala was 3.66-, 11.7-, and 1.5-fold, and for TvDAAO Phe258Ser it was 1.7-, 4.75-, and 6.61-fold, respectively.


Assuntos
D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Leveduras/enzimologia , Substituição de Aminoácidos , D-Aminoácido Oxidase/química , Desenho de Fármacos , Estabilidade de Medicamentos , Eletroforese em Gel de Poliacrilamida , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Especificidade por Substrato , Temperatura
20.
Biochemistry (Mosc) ; 77(10): 1199-209, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23157300

RESUMO

Recombinant formate dehydrogenase (FDH, EC 1.2.1.2) from soy Glycine max (SoyFDH) has the lowest values of Michaelis constants for formate and NAD+ among all studied formate dehydrogenases from different sources. Nevertheless, it also has the lower thermal stability compared to enzymes from bacteria and yeasts. The alignment of full sequences of FDHs from different sources as well as structure of apo- and holo-forms of SoyFDH has been analyzed. Ten mutant forms of SoyFDH were obtained by site-directed mutagenesis. All of them were purified to homogeneity and their thermal stability and substrate specificity were studied. Thermal stability was investigated by studying the inactivation kinetics at different temperatures and by differential scanning calorimetry (DSC). As a result, single-point (Ala267Met) and double mutants (Ala267Met/Ile272Val) were found to be more stable than the wild-type enzyme at high temperatures. The stabilization effect depends on temperature, and at 52°C it was 3.6- and 11-fold, respectively. These mutants also showed higher melting temperatures in DSC experiments - the differences in maxima of the melting curves (T(m)) for the single and double mutants were 2.7 and 4.6°C, respectively. For mutations Leu24Asp and Val127Arg, the thermal stability at 52°C decreased 5- and 2.5-fold, respectively, and the T(m) decreased by 3.5 and 1.7°C, respectively. There were no differences in thermal stability of six mutant forms of SoyFDH - Gly18Ala, Lys23Thr, Lys109Pro, Asn247Glu, Val281Ile, and Ser354Pro. Analysis of kinetic data showed that for the enzymes with mutations Val127Arg and Ala267Met the catalytic efficiency increased 1.7- and 2.3-fold, respectively.


Assuntos
Formiato Desidrogenases/química , Proteínas de Soja , Sequência de Aminoácidos , Varredura Diferencial de Calorimetria , Simulação por Computador , Desenho de Fármacos , Estabilidade Enzimática , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência , /genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...